×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院青海盐湖研究所机构知识库
Knowledge Management System Of Qinghai Institute of Salt Lakes,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
none
Authors
none
Document Type
none
Date Issued
none
Language
none
Source Publication
none
Funding Project
none
Indexed By
none
Funding Organization
none
×
Knowledge Map
ISL OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Search produced no results.
Filters
Language:A new hybrid gel with boron-selective functional groups is prepared with tetraethoxysilane (TEOS), (3-glycidoxypropyl)trimethoxysilane (GPTMS), and a new precursor (W) synthesized from GPTMS and N-methylglucamine (MG). We investigate the boron adsorption onto the hybrid gel and the commercial resin D564 in aqueous solution by varying the initial boron concentration, pH, ionic strength, and temperature. Adsorption of both the hybrid gel and the D564 can be described by the second-order kinetics and the hybrid gel shows the lower second-order rate constant and the initial adsorption rate than the commercial resin. A maximum boron adsorption occurs at pH 4-9, which can be explained by the adsorption suppression by H( ) ions at low pH and the weakened complexation by electrostatic repulsion at high pH. Ionic strength of the Solution affects both the adsorption kinetics and thermodynamics, and it has a more pronounced effect on the kinetics of the hybrid gel than the D564. For both the hybrid gel and the D564, adsorption was found to be a chemisorption, which may be more advantageous in removal of boron from water than physisorption due to a higher adsorption capacity and better selectivity. Compared with other boron-selective adsorbents, the boron-selective hybrid gel in this study is easy to prepare, and has a good mechanical strength and an adsorption capacity (1.15 mmol g(-1)). (C) 2009 Elsevier B.V. All rights reserved. A new hybrid gel with boron-selective functional groups is prepared with tetraethoxysilane (TEOS), (3-glycidoxypropyl)trimethoxysilane (GPTMS), and a new precursor (W) synthesized from GPTMS and N-methylglucamine (MG). We investigate the boron adsorption onto the hybrid gel and the commercial resin D564 in aqueous solution by varying the initial boron concentration, pH, ionic strength, and temperature. Adsorption of both the hybrid gel and the D564 can be described by the second-order kinetics and the hybrid gel shows the lower second-order rate constant and the initial adsorption rate than the commercial resin. A maximum boron adsorption occurs at pH 4-9, which can be explained by the adsorption suppression by H( ) ions at low pH and the weakened complexation by electrostatic repulsion at high pH. Ionic strength of the Solution affects both the adsorption kinetics and thermodynamics, and it has a more pronounced effect on the kinetics of the hybrid gel than the D564. For both the hybrid gel and the D564, adsorption was found to be a chemisorption, which may be more advantageous in removal of boron from water than physisorption due to a higher adsorption capacity and better selectivity. Compared with other boron-selective adsorbents, the boron-selective hybrid gel in this study is easy to prepare, and has a good mechanical strength and an adsorption capacity (1.15 mmol g(-1)). (C) 2009 Elsevier B.V. All rights reserved.