中国科学院青海盐湖研究所机构知识库
Advanced  
ISL OpenIR  > 青海盐湖研究所知识仓储  > 期刊论文
题名: Rubidium and cesium ion adsorption by an ammoniummolybdophosphate-calcium alginate composite adsorbent
作者: 叶秀深 ;  吴志坚 ;  李武 ;  刘海宁 ;  李权 ;  卿彬菊 ;  Guo, Min ;  Go, Fei
刊名: COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS
出版日期: 2009
卷号: 342, 期号:1-3, 页码:76-83
关键词: Rubidium ;  Cesium ;  Adsorption ;  Ammonium molybdophosphate ;  Composite
语种: A composite spherical adsorbent was prepared with ammonium molybdophosphate (AMP), sodium alginate (NaALG), and calcium chloride. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the composite adsorbent. The adsorption of rubidium and cesium ions onto the composite adsorbent in aqueous solutions was investigated comprehensively by varying the initial metal ion concentration, pH, ionic strength, and temperature. The adsorption kinetics of both rubidium and cesium was described by the first-order and second-order kinetic models. The second-order rate constant and the initial adsorption rate increase with increasing temperature. In general, the equilibrium adsorption amount of both rubidium and cesium increases with the increase in initial metal ion concentration, but decreases with increasing ionic strength and temperature. Maximum adsorption of rubidium and cesium Occurs in the solution with an equilibrium pH Value of 3.5-4.5. Under similar conditions, cesium shows a higher adsorption amount than rubidium. The composite adsorbent is easy to prepare and highly porous. It has a fast adsorption rate and ail adsorption capacity of 0.58 and 0.69 mmol g(-1) for rubidium and cesium, respectively. The composite adsorbent is effective for the adsorption of rubidium or cesium ions from Solutions containing some other alkali metal ions, Such as sodium ions. (c) 2009 Elsevier B.V. All rights reserved. A composite spherical adsorbent was prepared with ammonium molybdophosphate (AMP), sodium alginate (NaALG), and calcium chloride. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the composite adsorbent. The adsorption of rubidium and cesium ions onto the composite adsorbent in aqueous solutions was investigated comprehensively by varying the initial metal ion concentration, pH, ionic strength, and temperature. The adsorption kinetics of both rubidium and cesium was described by the first-order and second-order kinetic models. The second-order rate constant and the initial adsorption rate increase with increasing temperature. In general, the equilibrium adsorption amount of both rubidium and cesium increases with the increase in initial metal ion concentration, but decreases with increasing ionic strength and temperature. Maximum adsorption of rubidium and cesium Occurs in the solution with an equilibrium pH Value of 3.5-4.5. Under similar conditions, cesium shows a higher adsorption amount than rubidium. The composite adsorbent is easy to prepare and highly porous. It has a fast adsorption rate and ail adsorption capacity of 0.58 and 0.69 mmol g(-1) for rubidium and cesium, respectively. The composite adsorbent is effective for the adsorption of rubidium or cesium ions from Solutions containing some other alkali metal ions, Such as sodium ions. (c) 2009 Elsevier B.V. All rights reserved.
Citation statistics: 
内容类型: 期刊论文
URI标识: http://ir.isl.ac.cn/handle/363002/2103
Appears in Collections:青海盐湖研究所知识仓储(2014年之前)_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Ye, Xiushen,Wu, Zhijian,Li, Wu,et al. Rubidium and cesium ion adsorption by an ammoniummolybdophosphate-calcium alginate composite adsorbent[J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS,2009,342(1-3):76-83.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Ye, Xiushen]'s Articles
 [Wu, Zhijian]'s Articles
 [Li, Wu]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Ye, Xiushen]‘s Articles
 [Wu, Zhijian]‘s Articles
 [Li, Wu]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院青海盐湖研究所 - Feedback
Powered by CSpace