中国科学院青海盐湖研究所机构知识库
Advanced  
ISL OpenIR  > 青海盐湖研究所知识仓储  > 期刊论文
题名: Determination of Lithium in the Oil Field Water by Flame AtomicAbsorption Spectrometry
作者: Yang Hong-jun ;  叶秀深 ;  李冰 ;  吴志坚 ;  李武
刊名: SPECTROSCOPY AND SPECTRAL ANALYSIS
出版日期: 2009
卷号: 29, 期号:1, 页码:263-267
关键词: Flame atomic absorption spectrometry ;  Oil field water ;  Lithium
语种: Flame atomic absorption spectrometry was applied to the determination of micro amount of lithium in the oil field water of certain area. In order to determine which method is more appropriate for the determination of lithium content in the oil field water, standard curve method and standard addition method were compared. The effects of dilution, coexistent ions, and deionizers on the determination were studied. For the determination of lithium content in the same diluted oil field water samples, there exist obvious differences between the results obtained from standard addition method and standard curve method. Standard addition method gives results with a larger error, whereas standard curve method gives more accurate results. It is difficult to eliminate the interferences when the standard addition method is used. The standard curve method is found to be more suitable for the determination of micro amount of lithium in the oil field water for its accuracy, simplicity, and feasibility. When the standard curve method is used, both the determined lithium concentration and the recovery change with the dilution extent of the oil field water. In order to get an accurate result, the oil field water sample should be diluted to 1/200 or less. In this case, the recovery by standard addition method ranges from 94.3% to 96.9%. When sodium phosphate or sodium chloride is used as the deionizer, the recovery by standard addition method ranges from 94.6% to 98.6%, or from 94.2% to 96.3%. In the determination of lithium content in oil field water, there are larger experimental errors without the addition of any deionizer. When the concentration of coexistent ions is within an allowed range, the addition of sodium phosphate as a deionizer can eliminate the interferences of the coexistent ions with the determination of the lithium content. If sodium chloride is used as a deionizer, a more accurate result can be obtained when the sodium content in the samples is near the sodium content in the standard solutions. In general, tinder suitable experimental conditions, sodium chloride can be used as the deionizer for the determination of lithium content in the oil field water. Flame atomic absorption spectrometry was applied to the determination of micro amount of lithium in the oil field water of certain area. In order to determine which method is more appropriate for the determination of lithium content in the oil field water, standard curve method and standard addition method were compared. The effects of dilution, coexistent ions, and deionizers on the determination were studied. For the determination of lithium content in the same diluted oil field water samples, there exist obvious differences between the results obtained from standard addition method and standard curve method. Standard addition method gives results with a larger error, whereas standard curve method gives more accurate results. It is difficult to eliminate the interferences when the standard addition method is used. The standard curve method is found to be more suitable for the determination of micro amount of lithium in the oil field water for its accuracy, simplicity, and feasibility. When the standard curve method is used, both the determined lithium concentration and the recovery change with the dilution extent of the oil field water. In order to get an accurate result, the oil field water sample should be diluted to 1/200 or less. In this case, the recovery by standard addition method ranges from 94.3% to 96.9%. When sodium phosphate or sodium chloride is used as the deionizer, the recovery by standard addition method ranges from 94.6% to 98.6%, or from 94.2% to 96.3%. In the determination of lithium content in oil field water, there are larger experimental errors without the addition of any deionizer. When the concentration of coexistent ions is within an allowed range, the addition of sodium phosphate as a deionizer can eliminate the interferences of the coexistent ions with the determination of the lithium content. If sodium chloride is used as a deionizer, a more accurate result can be obtained when the sodium content in the samples is near the sodium content in the standard solutions. In general, tinder suitable experimental conditions, sodium chloride can be used as the deionizer for the determination of lithium content in the oil field water.
Citation statistics: 
内容类型: 期刊论文
URI标识: http://ir.isl.ac.cn/handle/363002/2125
Appears in Collections:青海盐湖研究所知识仓储(2014年之前)_期刊论文

Files in This Item:

There are no files associated with this item.


Recommended Citation:
Yang Hong-jun,Ye Xiu-shen,Li Bing,et al. Determination of Lithium in the Oil Field Water by Flame AtomicAbsorption Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2009,29(1):263-267.
Service
 Recommend this item
 Sava as my favorate item
 Show this item's statistics
 Export Endnote File
Google Scholar
 Similar articles in Google Scholar
 [Yang Hong-jun]'s Articles
 [Ye Xiu-shen]'s Articles
 [Li Bing]'s Articles
CSDL cross search
 Similar articles in CSDL Cross Search
 [Yang Hong-jun]‘s Articles
 [Ye Xiu-shen]‘s Articles
 [Li Bing]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
  Add to CiteULike  Add to Connotea  Add to Del.icio.us  Add to Digg  Add to Reddit 
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2016  中国科学院青海盐湖研究所 - Feedback
Powered by CSpace